Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.901
Filtrar
1.
PLoS One ; 19(4): e0296607, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626075

RESUMO

Tinnitus is a common annoying symptom without effective and accepted treatment. In this controlled experimental study, photobiomodulation therapy (PBMT), which uses light to modulate and repair target tissue, was used to treat sodium salicylate (SS)-induced tinnitus in a rat animal model. Here, PBMT was performed simultaneously on the peripheral and central regions involved in tinnitus. The results were evaluated using objective tests including gap pre-pulse inhibition of acoustic startle (GPIAS), auditory brainstem response (ABR) and immunohistochemistry (IHC). Harmful neural plasticity induced by tinnitus was detected by doublecortin (DCX) protein expression, a known marker of neural plasticity. PBMT parameters were 808 nm wavelength, 165 mW/cm2 power density, and 99 J/cm2 energy density. In the tinnitus group, the mean gap in noise (GIN) value of GPIAS test was significantly decreased indicated the occurrence of an additional perceived sound like tinnitus and also the mean ABR threshold and brainstem transmission time (BTT) were significantly increased. In addition, a significant increase in DCX expression in the dorsal cochlear nucleus (DCN), dentate gyrus (DG) and the parafloccular lobe (PFL) of cerebellum was observed in the tinnitus group. In PBMT group, a significant increase in the GIN value, a significant decrease in the ABR threshold and BTT, and also significant reduction of DCX expression in the DG were observed. Based on our findings, PBMT has the potential to be used in the management of SS-induced tinnitus.


Assuntos
Núcleo Coclear , Terapia com Luz de Baixa Intensidade , Zumbido , Ratos , Animais , Salicilato de Sódio/farmacologia , Zumbido/induzido quimicamente , Zumbido/radioterapia , Plasticidade Neuronal/fisiologia
2.
Neurobiol Aging ; 136: 111-124, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342072

RESUMO

In mammals, thick axonal calibers wrapped with heavy myelin sheaths are prevalent in the auditory nervous system. These features are crucial for fast traveling of nerve impulses with minimal attenuation required for sound signal transmission. In particular, the long-range projections from the cochlear nucleus - the axons of globular bush cells (GBCs) - to the medial nucleus of the trapezoid body (MNTB) are tonotopically organized. However, it remains controversial in gerbils and mice whether structural and functional adaptations are present among the GBC axons targeting different MNTB frequency regions. By means of high-throughput volume electron microscopy, we compared the GBC axons in full-tonotopy-ranged MNTB slices from the C57BL/6 mice at different ages. Our quantification reveals distinct caliber diameter and myelin profile of the GBC axons with endings at lateral and medial MNTB, arguing for modulation of functionally heterogeneous axon subgroups. In addition, we reported axon-specific differences in axon caliber, node of Ranvier, and myelin sheath among juvenile, adult, and old mice, indicating the age-related changes of GBC axon morphology over time. These findings provide structural insight into the maturation and degeneration of GBC axons with frequency tuning across the lifespan of mice.


Assuntos
Vias Auditivas , Núcleo Coclear , Camundongos , Animais , Vias Auditivas/fisiologia , Microscopia Eletrônica de Volume , Camundongos Endogâmicos C57BL , Axônios/fisiologia , Núcleo Coclear/fisiologia , Bainha de Mielina , Mamíferos
3.
J Neurosci ; 44(6)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37968120

RESUMO

In higher sensory brain regions, slow oscillations (0.5-5 Hz) associated with quiet wakefulness and attention modulate multisensory integration, predictive coding, and perception. Although often assumed to originate via thalamocortical mechanisms, the extent to which subcortical sensory pathways are independently capable of slow oscillatory activity is unclear. We find that in the first station for auditory processing, the cochlear nucleus, fusiform cells from juvenile mice (of either sex) generate robust 1-2 Hz oscillations in membrane potential and exhibit electrical resonance. Such oscillations were absent prior to the onset of hearing, intrinsically generated by hyperpolarization-activated cyclic nucleotide-gated (HCN) and persistent Na+ conductances (NaP) interacting with passive membrane properties, and reflected the intrinsic resonance properties of fusiform cells. Cx36-containing gap junctions facilitated oscillation strength and promoted pairwise synchrony of oscillations between neighboring neurons. The strength of oscillations were strikingly sensitive to external Ca2+, disappearing at concentrations >1.7 mM, due in part to the shunting effect of small-conductance calcium-activated potassium (SK) channels. This effect explains their apparent absence in previous in vitro studies of cochlear nucleus which routinely employed high-Ca2+ extracellular solution. In contrast, oscillations were amplified in reduced Ca2+ solutions, due to relief of suppression by Ca2+ of Na+ channel gating. Our results thus reveal mechanisms for synchronous oscillatory activity in auditory brainstem, suggesting that slow oscillations, and by extension their perceptual effects, may originate at the earliest stages of sensory processing.


Assuntos
Cálcio , Núcleo Coclear , Camundongos , Animais , Cálcio/metabolismo , Núcleo Coclear/fisiologia , Neurônios/fisiologia , Potenciais da Membrana/fisiologia , Vias Aferentes/fisiologia
4.
Laryngoscope ; 134(3): 1363-1371, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37551886

RESUMO

OBJECTIVE: Fragile X Syndrome (FXS) is a hereditary form of autism spectrum disorder. It is caused by a trinucleotide repeat expansion in the Fmr1 gene, leading to a loss of Fragile X Protein (FMRP) expression. The loss of FMRP causes auditory hypersensitivity: FXS patients display hyperacusis and the Fmr1- knock-out (KO) mouse model for FXS exhibits auditory seizures. FMRP is strongly expressed in the cochlear nucleus and other auditory brainstem nuclei. We hypothesize that the Fmr1-KO mouse has altered gene expression in the cochlear nucleus that may contribute to auditory hypersensitivity. METHODS: RNA was isolated from cochlear nuclei of Fmr1-KO and WT mice. Using next-generation sequencing (RNA-seq), the transcriptomes of Fmr1-KO mice and WT mice (n = 3 each) were compared and analyzed using gene ontology programs. RESULTS: We identified 270 unique, differentially expressed genes between Fmr1-KO and WT cochlear nuclei. Upregulated genes (67%) are enriched in those encoding secreted molecules. Downregulated genes (33%) are enriched in neuronal function, including synaptic pathways, some of which are ideal candidate genes that may contribute to hyperacusis. CONCLUSION: The loss of FMRP can affect the expression of genes in the cochlear nucleus that are important for neuronal signaling. One of these, Kcnab2, which encodes a subunit of the Shaker voltage-gated potassium channel, is expressed at an abnormally low level in the Fmr1-KO cochlear nucleus. Kcnab2 and other differentially expressed genes may represent pathways for the development of hyperacusis. Future studies will be aimed at investigating the effects of these altered genes on hyperacusis. LEVEL OF EVIDENCE: N/A Laryngoscope, 134:1363-1371, 2024.


Assuntos
Transtorno do Espectro Autista , Núcleo Coclear , Síndrome do Cromossomo X Frágil , Humanos , Camundongos , Animais , Núcleo Coclear/metabolismo , Hiperacusia/genética , Transcriptoma , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Camundongos Knockout , Modelos Animais de Doenças , Superfamília Shaker de Canais de Potássio/genética , Superfamília Shaker de Canais de Potássio/metabolismo
5.
Hear Res ; 442: 108935, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38113793

RESUMO

Sound information is transduced from mechanical vibration to electrical signals in the cochlea, conveyed to and further processed in the brain to form auditory perception. During the process, spiral ganglion neurons (SGNs) are the key cells that connect the peripheral and central auditory systems by receiving information from hair cells in the cochlea and transmitting it to neurons of the cochlear nucleus (CN). Decades of research in the cochlea greatly improved our understanding of SGN function under normal and pathological conditions, especially about the roles of different subtypes of SGNs and their peripheral synapses. However, it remains less clear how SGN central terminals or auditory nerve (AN) synapses connect to CN neurons, and ultimately how peripheral pathology links to structural alterations and functional deficits in the central auditory nervous system. This review discusses recent progress about the morphological and physiological properties of different subtypes of AN synapses and associated postsynaptic CN neurons, their changes during aging, and the potential mechanisms underlying age-related hearing loss.


Assuntos
Núcleo Coclear , Perda Auditiva , Humanos , Núcleo Coclear/patologia , Nervo Coclear , Neurônios/patologia , Sinapses/patologia , Gânglio Espiral da Cóclea/patologia , Cóclea/fisiologia
6.
J Acoust Soc Am ; 154(6): 3644-3659, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051523

RESUMO

An auditory model has been developed with a time-varying, gain-control signal based on the physiology of the efferent system and subcortical neural pathways. The medial olivocochlear (MOC) efferent stage of the model receives excitatory projections from fluctuation-sensitive model neurons of the inferior colliculus (IC) and wide-dynamic-range model neurons of the cochlear nucleus. The response of the model MOC stage dynamically controls cochlear gain via simulated outer hair cells. In response to amplitude-modulated (AM) noise, firing rates of most IC neurons with band-enhanced modulation transfer functions in awake rabbits increase over a time course consistent with the dynamics of the MOC efferent feedback. These changes in the rates of IC neurons in awake rabbits were employed to adjust the parameters of the efferent stage of the proposed model. Responses of the proposed model to AM noise were able to simulate the increasing IC rate over time, whereas the model without the efferent system did not show this trend. The proposed model with efferent gain control provides a powerful tool for testing hypotheses, shedding insight on mechanisms in hearing, specifically those involving the efferent system.


Assuntos
Núcleo Coclear , Colículos Inferiores , Animais , Coelhos , Colículos Inferiores/fisiologia , Núcleo Coclear/fisiologia , Vias Eferentes/fisiologia , Cóclea/fisiologia , Audição/fisiologia , Núcleo Olivar/fisiologia , Vias Auditivas/fisiologia
7.
Front Neural Circuits ; 17: 1307283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107610

RESUMO

Auditory brainstem neurons in the lateral superior olive (LSO) receive excitatory input from the ipsilateral cochlear nucleus (CN) and inhibitory transmission from the contralateral CN via the medial nucleus of the trapezoid body (MNTB). This circuit enables sound localization using interaural level differences. Early studies have observed an additional inhibitory input originating from the ipsilateral side. However, many of its details, such as its origin, remained elusive. Employing electrical and optical stimulation of afferents in acute mouse brainstem slices and anatomical tracing, we here describe a glycinergic projection to LSO principal neurons that originates from the ipsilateral CN. This inhibitory synaptic input likely mediates inhibitory sidebands of LSO neurons in response to acoustic stimulation.


Assuntos
Núcleo Coclear , Localização de Som , Complexo Olivar Superior , Animais , Camundongos , Complexo Olivar Superior/fisiologia , Núcleo Coclear/fisiologia , Núcleo Olivar/fisiologia , Localização de Som/fisiologia , Neurônios/fisiologia , Vias Auditivas/fisiologia
8.
JASA Express Lett ; 3(10)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37787696

RESUMO

The cochlear nucleus (CN) receives ipsilateral input from the auditory nerve and projects to other auditory brainstem nuclei. Little is known about CN processing of signals used for echolocation. This study recorded multiple unit activity in the CN of anesthetized big brown bats (Eptesicus fuscus) to ultrasonic frequency-modulated (FM) sweeps differing in sweep direction. FM up-sweeps evoke larger peak amplitudes at shorter onset latencies and with smaller amplitude-latency trading ratios than FM down-sweeps. Variability of onset latencies is in the tens of microsecond ranges, indicating sharp temporal precision in the CN for coding of FM signals.


Assuntos
Quirópteros , Núcleo Coclear , Ecolocação , Animais , Quirópteros/fisiologia , Neurônios/fisiologia , Ecolocação/fisiologia , Nervo Coclear
9.
J Otolaryngol Head Neck Surg ; 52(1): 67, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803428

RESUMO

Highly accurate real-time cochlear nerve monitoring to preserve cochlear nerve function is essential for simultaneous cochlear implantation and ipsilateral vestibular schwannoma resection. In the present study, we developed a novel real-time monitoring system that combines dorsal cochlear nucleus action potential monitoring with intracochlear stimulating electrodes (Auditory Nerve Test System, ANTS). We used this system for a case with vestibular schwannoma resection via the translabyrinthine approach. The monitoring system developed in this study detected highly reliable evoked potentials from the cochlear nerve every two seconds continuously during tumor resection. Near-total tumor resection was achieved, and cochlear implantation was performed successfully after confirming the preservation of cochlear nerve function in a case. The patient's hearing was well compensated by cochlear implantation after surgery. Our novel method continuously achieved real-time monitoring of the cochlear nerve every two seconds during vestibular schwannoma resection. The usefulness of this monitoring system for simultaneous tumor resection and cochlear implantation was demonstrated in the present case. The system developed in this study is compatible with continuous facial nerve monitoring. This highly accurate and novel monitoring method will broaden the number of candidates for this type of surgery in the future.


Assuntos
Implante Coclear , Núcleo Coclear , Neuroma Acústico , Humanos , Neuroma Acústico/cirurgia , Núcleo Coclear/cirurgia , Potenciais de Ação/fisiologia , Implante Coclear/métodos , Nervo Coclear/patologia , Nervo Coclear/cirurgia
10.
Front Neural Circuits ; 17: 1229746, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554670

RESUMO

The cochlear nucleus (CN) is often regarded as the gateway to the central auditory system because it initiates all ascending pathways. The CN consists of dorsal and ventral divisions (DCN and VCN, respectively), and whereas the DCN functions in the analysis of spectral cues, circuitry in VCN is part of the pathway focused on processing binaural information necessary for sound localization in horizontal plane. Both structures project to the inferior colliculus (IC), which serves as a hub for the auditory system because pathways ascending to the forebrain and descending from the cerebral cortex converge there to integrate auditory, motor, and other sensory information. DCN and VCN terminations in the IC are thought to overlap but given the differences in VCN and DCN architecture, neuronal properties, and functions in behavior, we aimed to investigate the pattern of CN connections in the IC in more detail. This study used electrophysiological recordings to establish the frequency sensitivity at the site of the anterograde dye injection for the VCN and DCN of the CBA/CaH mouse. We examined their contralateral projections that terminate in the IC. The VCN projections form a topographic sheet in the central nucleus (CNIC). The DCN projections form a tripartite set of laminar sheets; the lamina in the CNIC extends into the dorsal cortex (DC), whereas the sheets to the lateral cortex (LC) and ventrolateral cortex (VLC) are obliquely angled away. These fields in the IC are topographic with low frequencies situated dorsally and progressively higher frequencies lying more ventrally and/or laterally; the laminae nestle into the underlying higher frequency fields. The DCN projections are complementary to the somatosensory modules of layer II of the LC but both auditory and spinal trigeminal terminations converge in the VLC. While there remains much to be learned about these circuits, these new data on auditory circuits can be considered in the context of multimodal networks that facilitate auditory stream segregation, signal processing, and species survival.


Assuntos
Núcleo Coclear , Colículos Inferiores , Camundongos , Animais , Colículos Inferiores/fisiologia , Núcleo Coclear/fisiologia , Vias Auditivas/fisiologia , Camundongos Endogâmicos CBA , Neurônios
11.
J Neurosci ; 43(34): 6035-6045, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37507229

RESUMO

Unipolar brush cells (UBCs) in the cerebellum and dorsal cochlear nucleus (DCN) perform temporal transformations by converting brief mossy fiber bursts into long-lasting responses. In the cerebellar UBC population, mixing inhibition with graded mGluR1-dependent excitation leads to a continuum of temporal responses. In the DCN, it has been thought that mGluR1 contributes little to mossy fiber responses and that there are distinct excitatory and inhibitory UBC subtypes. Here, we investigate UBC response properties using noninvasive cell-attached recordings in the DCN of mice of either sex. We find a continuum of responses to mossy fiber bursts ranging from 100 ms excitation to initial inhibition followed by several seconds of excitation to inhibition lasting for hundreds of milliseconds. Pharmacological interrogation reveals excitatory responses are primarily mediated by mGluR1 Thus, UBCs in both the DCN and cerebellum rely on mGluR1 and have a continuum of response durations. The continuum of responses in the DCN may allow more flexible and efficient temporal processing than can be achieved with distinct excitatory and inhibitory populations.SIGNIFICANCE STATEMENT UBCs are specialized excitatory interneurons in cerebellar-like structures that greatly prolong the temporal responses of mossy fiber inputs. They are thought to help cancel out self-generated signals. In the DCN, the prevailing view was that there are two distinct ON and OFF subtypes of UBCs. Here, we show that instead the UBC population has a continuum of response properties. Many cells show suppression and excitation consecutively, and the response durations vary considerably. mGluR1s are crucial in generating a continuum of responses. To understand how UBCs contribute to temporal processing, it is essential to consider the continuous variations of UBC responses, which have advantages over just having opposing ON/OFF subtypes of UBCs.


Assuntos
Núcleo Coclear , Camundongos , Animais , Fibras Nervosas/fisiologia , Neurônios/fisiologia , Córtex Cerebelar/fisiologia , Cerebelo/fisiologia
12.
Elife ; 122023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37288824

RESUMO

Globular bushy cells (GBCs) of the cochlear nucleus play central roles in the temporal processing of sound. Despite investigation over many decades, fundamental questions remain about their dendrite structure, afferent innervation, and integration of synaptic inputs. Here, we use volume electron microscopy (EM) of the mouse cochlear nucleus to construct synaptic maps that precisely specify convergence ratios and synaptic weights for auditory nerve innervation and accurate surface areas of all postsynaptic compartments. Detailed biophysically based compartmental models can help develop hypotheses regarding how GBCs integrate inputs to yield their recorded responses to sound. We established a pipeline to export a precise reconstruction of auditory nerve axons and their endbulb terminals together with high-resolution dendrite, soma, and axon reconstructions into biophysically detailed compartmental models that could be activated by a standard cochlear transduction model. With these constraints, the models predict auditory nerve input profiles whereby all endbulbs onto a GBC are subthreshold (coincidence detection mode), or one or two inputs are suprathreshold (mixed mode). The models also predict the relative importance of dendrite geometry, soma size, and axon initial segment length in setting action potential threshold and generating heterogeneity in sound-evoked responses, and thereby propose mechanisms by which GBCs may homeostatically adjust their excitability. Volume EM also reveals new dendritic structures and dendrites that lack innervation. This framework defines a pathway from subcellular morphology to synaptic connectivity, and facilitates investigation into the roles of specific cellular features in sound encoding. We also clarify the need for new experimental measurements to provide missing cellular parameters, and predict responses to sound for further in vivo studies, thereby serving as a template for investigation of other neuron classes.


Assuntos
Núcleo Coclear , Percepção do Tempo , Animais , Camundongos , Núcleo Coclear/fisiologia , Modelos Epidemiológicos , Neurônios/fisiologia , Nervo Coclear/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
13.
J Assoc Res Otolaryngol ; 24(3): 365-384, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37156973

RESUMO

The auditory brainstem implant (ABI) is an auditory neuroprosthesis that provides hearing by electrically stimulating the cochlear nucleus (CN) of the brainstem. Our previous study (McInturff et al., 2022) showed that single-pulse stimulation of the dorsal (D)CN subdivision with low levels of current evokes responses that have early latencies, different than the late response patterns observed from stimulation of the ventral (V)CN. How these differing responses encode more complex stimuli, such as pulse trains and amplitude modulated (AM) pulses, has not been explored. Here, we compare responses to pulse train stimulation of the DCN and VCN, and show that VCN responses, measured in the inferior colliculus (IC), have less adaption, higher synchrony, and higher cross-correlation. However, with high-level DCN stimulation, responses become like those to VCN stimulation, supporting our earlier hypothesis that current spreads from electrodes on the DCN to excite neurons located in the VCN. To AM pulses, stimulation of the VCN elicits responses with larger vector strengths and gain values especially in the high-CF portion of the IC. Additional analysis using neural measures of modulation thresholds indicate that these measures are lowest for VCN. Human ABI users with low modulation thresholds, who score best on comprehension tests, may thus have electrode arrays that stimulate the VCN. Overall, the results show that the VCN has superior response characteristics and suggest that it should be the preferred target for ABI electrode arrays in humans.


Assuntos
Implantes Auditivos de Tronco Encefálico , Núcleo Coclear , Animais , Humanos , Frequência Cardíaca , Núcleo Coclear/fisiologia , Audição , Modelos Animais , Estimulação Elétrica/métodos
14.
J Chem Neuroanat ; 131: 102284, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37164181

RESUMO

Acetylcholine modulates responses throughout the auditory system, including at the earliest brain level, the cochlear nucleus (CN). Previous studies have shown multiple sources of cholinergic input to the CN but information about their relative contributions and the distribution of inputs from each source is lacking. Here, we used staining for cholinergic axons and boutons, retrograde tract tracing, and acetylcholine-selective anterograde tracing to characterize three sources of acetylcholine input to the CN in mice. Staining for cholinergic axons showed heavy cholinergic inputs to granule cell areas and the dorsal CN with lighter input to the ventral CN. Retrograde tract tracing revealed that cholinergic cells from the superior olivary complex, pontomesencephalic tegmentum, and lateral paragigantocellular nucleus send projections to the CN. When we selectively labeled cholinergic axons from each source to the CN, we found surprising similarities in their terminal distributions, with patterns that were overlapping rather than complementary. Each source heavily targeted granule cell areas and the dorsal CN (especially the deep dorsal CN) and sent light input into the ventral CN. Our results demonstrate convergence of cholinergic inputs from multiple sources in most regions of the CN and raise the possibility of convergence onto single CN cells. Linking sources of acetylcholine and their patterns of activity to modulation of specific cell types in the CN will be an important next step in understanding cholinergic modulation of early auditory processing.


Assuntos
Núcleo Coclear , Camundongos , Animais , Núcleo Coclear/metabolismo , Acetilcolina/metabolismo , Colinérgicos , Tegmento Mesencefálico , Axônios/metabolismo
15.
J Physiol ; 601(14): 2991-3006, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37212296

RESUMO

Hearing impairment without threshold elevations can occur when there is damage to high-threshold auditory nerve fibre synapses with cochlear inner hair cells. Instead, cochlear synaptopathy produces suprathreshold deficits, especially in older patients, which affect conversational speech. Given that listening in noise at suprathreshold levels presents significant challenges to the ageing population, we examined the effects of synaptopathy on tone-in-noise coding on the central recipients of auditory nerve fibres, i.e. the cochlear nucleus neurons. To induce synaptopathy, guinea pigs received a unilateral sound overexposure to the left ears. A separate group received sham exposures. At 4 weeks post-exposure, thresholds had recovered but reduced auditory brainstem response wave 1 amplitudes and auditory nerve synapse loss remained on the left side. Single-unit responses were recorded from several cell types in the ventral cochlear nucleus to pure-tone and noise stimuli. Receptive fields and rate-level functions in the presence of continuous broadband noise were examined. The synaptopathy-inducing noise exposure did not affect mean unit tone-in-noise thresholds, nor the tone-in-noise thresholds in each animal, demonstrating equivalent tone-in-noise detection thresholds to sham animals. However, synaptopathy reduced single-unit responses to suprathreshold tones in the presence of background noise, particularly in the cochlear nucleus small cells. These data demonstrate that suprathreshold tone-in-noise deficits following cochlear synaptopathy are evident in the first neural station of the auditory brain, the cochlear nucleus neurons, and provide a potential target for assessment and treatment of listening-in-noise deficits in humans. KEY POINTS: Recording from multiple central auditory neurons can determine tone-in-noise deficits in animals with quantified cochlear synapse damage. Using this technique, we found that tone-in-noise thresholds are not altered by cochlear synaptopathy, whereas coding of suprathreshold tones-in-noise is disrupted. Suprathreshold deficits occur in small cells and primary-like neurons of the cochlear nucleus. These data provide important insights into the mechanisms underlying difficulties associated with hearing in noisy environments.


Assuntos
Núcleo Coclear , Perda Auditiva Provocada por Ruído , Humanos , Animais , Cobaias , Idoso , Ruído/efeitos adversos , Limiar Auditivo/fisiologia , Cóclea/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia
16.
J Assoc Res Otolaryngol ; 24(3): 281-290, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37253961

RESUMO

PURPOSE: The echolocating bat is used as a model for studying the auditory nervous system because its specialized sensory capabilities arise from general mammalian auditory percepts such as pitch and sound source localization. These percepts are mediated by precise timing within neurons and networks of the lower auditory brainstem, where the gap junction protein Connexin36 (CX36) is expressed. Gap junctions and electrical synapses in the central nervous system are associated with fast transmission and synchronous patterns of firing within neuronal networks. The purpose of this study was to identify areas where CX36 was expressed in the bat cochlear nucleus to shed light on auditory brainstem networks in a hearing specialist animal model. METHODS: We investigated the distribution of CX36 RNA throughout the cochlear nucleus complex of the echolocating big brown bat, Eptesicus fuscus, using in situ hybridization. As a qualitative comparison, we visualized Gjd2 gene expression in the cochlear nucleus of transgenic CX36 reporter mice, species that hear ultrasound but do not echolocate. RESULTS: In both the bat and the mouse, CX36 is expressed in the anteroventral and in the dorsal cochlear nucleus, with more limited expression in the posteroventral cochlear nucleus. These results are generally consistent with previous work based on immunohistochemistry. CONCLUSION: Our data suggest that the anatomical substrate for CX36-mediated electrical neurotransmission is conserved in the mammalian CN across echolocating bats and non-echolocating mice.


Assuntos
Quirópteros , Núcleo Coclear , Ecolocação , Camundongos , Animais , Quirópteros/fisiologia , Conexinas/metabolismo , Camundongos Transgênicos , RNA/metabolismo , Ecolocação/fisiologia
17.
J Comp Neurol ; 531(12): 1261-1273, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37245999

RESUMO

Despite the absence of tympanic middle ears, snakes can hear. They are thought to primarily detect substrate vibration via connections between the lower jaw and the inner ear. We used the western rat snake (Pantherophis obsoletus) to determine how vibration is processed in the brain. We measured vibration-evoked potential recordings to reveal sensitivity to low-frequency vibrations. We then used tract tracing combined with immunohistochemistry and Nissl staining to describe the central projections of the papillar branch of the VIIIth nerve. Applications of biotinylated dextran amine to the basilar papilla (homologous to the organ of Corti of mammals) labeled bouton-like terminals in two first-order cochlear nuclei, a rostrolateral nucleus angularis (NA) and a caudomedial nucleus magnocellularis (NM). NA formed a distinct dorsal eminence, consisted of heterogenous cell types, and was parvalbumin positive. NM was smaller and poorly separated from the surrounding vestibular nuclei. NM was distinguished by positive calbindin label and included fusiform and round cells. Thus, the atympanate western rat snake shares similar first-order projections to tympanate reptiles. Auditory pathways may be used for detecting vibration, not only in snakes but also potentially in atympanate early tetrapods.


Assuntos
Vias Auditivas , Núcleo Coclear , Animais , Vias Auditivas/fisiologia , Bulbo , Nervo Coclear , Serpentes , Mamíferos
18.
J Neurophysiol ; 130(1): 5-22, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37222444

RESUMO

The dorsal cochlear nucleus (DCN) in the auditory brainstem integrates auditory and somatosensory information. Mature DCN fusiform neurons fall into two qualitatively distinct types: quiet, with no spontaneous regular action potential firing, or active, with regular spontaneous action potential firing. However, how these firing states and other electrophysiological properties of fusiform neurons develop during early postnatal days to adulthood is not known. Thus, we recorded fusiform neurons from mice from P4 to P21 and analyzed their electrophysiological properties. In the prehearing phase (P4-P13), we found that most fusiform neurons are quiet, with active neurons emerging after hearing onset at P14. Subthreshold properties underwent significant changes before hearing onset, whereas changes to the action potential waveform occurred mainly after P14, with the depolarization and repolarization phases becoming markedly faster and half-width significantly decreased. The activity threshold in posthearing neurons was more negative than in prehearing cells. Persistent sodium current (INaP) was increased after P14, coinciding with the emergence of spontaneous firing. Thus, we suggest that posthearing expression of INaP leads to hyperpolarization of the activity threshold and the active state of the fusiform neuron. At the same time, other changes refine the passive membrane properties and increase the speed of action potential firing of fusiform neurons.NEW & NOTEWORTHY Auditory brainstem neurons express unique electrophysiological properties adapted for their complex physiological functions that develop before hearing onset. Fusiform neurons of the DCN present two firing states, quiet and active, but the origin of these states is not known. Here, we showed that the quiet and active states develop after hearing onset at P14, along with changes in action potentials, suggesting an influence of auditory input on the refining of fusiform neuron's excitability.


Assuntos
Núcleo Coclear , Animais , Camundongos , Audição , Neurônios , Potenciais de Ação , Tronco Encefálico
19.
Neurosci Lett ; 806: 137244, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37055006

RESUMO

Two transcription factors, Atoh1 and Ptf1a, are essential for cochlear nuclei development. Atoh1 is needed to develop glutamatergic neurons, while Ptf1a is required to generate glycinergic and GABAergic neurons that migrate into the cochlear nucleus. While central projections of inner ear afferents are normal following loss of Atoh1, we wanted to know whether the loss of Ptf1a affects central projections. We found that in Ptf1a mutants, initially, afferents show a normal projection; however, a transient posterior expansion of projections to the dorsal cochlear nucleus occurs at a later stage. In addition, in older (E18.5) Ptf1a mutant mice, excessive neuronal branches form beyond the normal projection to the anterior and posterior ventral cochlear nuclei. Our results on Ptf1a null mice are comparable to that observed in loss of function Prickel1, Npr2, or Fzd3 mouse mutants. The disorganized tonotopic projections that we report in Ptf1a mutant embryos might be functionally relevant, but testing this hypothesis requires Ptf1a KO mice at postnatal stages that unfortunately cannot be performed due to their early death.


Assuntos
Núcleo Coclear , Orelha Interna , Animais , Camundongos , Núcleo Coclear/metabolismo , Orelha Interna/metabolismo , Camundongos Knockout , Neurônios/metabolismo , Gânglio Espiral da Cóclea/metabolismo , Fatores de Transcrição/metabolismo
20.
Neuroscience ; 514: 25-37, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36738912

RESUMO

Cellular morphology and synaptic configuration are key determinants of neuronal function and are often modified under pathological conditions. In the first nucleus of the central auditory system, the cochlear nucleus (CN), principal bushy neurons specialize in processing temporal information of sound critical for hearing. These neurons alter their physiological properties during aging that contribute to age-related hearing loss (ARHL). The structural basis of such changes remains unclear, especially age-related modifications in their dendritic morphology and the innervating auditory nerve (AN) synapses. Using young (2-5 months) and aged (28-33 months) CBA/CaJ mice of either sex, we filled individual bushy neurons with fluorescent dye in acute brain slices to characterize their dendritic morphology, followed by immunostaining against vesicular glutamate transporter 1 (VGluT1) and calretinin (CR) to identify innervating AN synapses. We found that dendritic morphology of aged bushy neurons had significantly reduced complexity, suggesting age-dependent dendritic degeneration, especially in neurons with predominantly non-CR-expressing synapses on the soma. These dendrites were innervated by AN bouton synapses, which were predominantly non-CR-expressing in young mice but had increased proportion of CR-expressing synapses in old mice. While somatic AN synapses degenerated substantially with age, as quantified by VGluT1-labeled puncta volume, no significant difference was observed in the total volume of dendritic synapses between young and old mice. Consequently, synaptic density on dendrites was significantly higher in old mice. The findings suggest that dendritic degeneration and altered synaptic innervation in bushy neurons during aging may underlie their changed physiological activity and contribute to the development of ARHL.


Assuntos
Núcleo Coclear , Perda Auditiva , Animais , Camundongos , Nervo Coclear , Camundongos Endogâmicos CBA , Neurônios/fisiologia , Sinapses/fisiologia , Masculino , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...